Colles de Maths - semaine 14 Lycée Aux Lazaristes

Julien Allasia - ENS de Lyon

Polynômes

Exercice 1 Soit $P \in \mathbb{R}[X]$ un polynôme non constant unitaire. Montrer que P est scindé sur \mathbb{R} si et seulement si

$$\forall z \in \mathbb{C}, |P(z)| \ge |\Im(z)|^{\deg P}.$$

Exercice 2 Soit $A \in \mathbb{R}[X]$. Montrer l'équivalence entre les deux points suivants :

- (i) Pour tout réel x, $A(x) \ge 0$.
- (ii) Il existe $P, Q \in \mathbb{R}[X]$ tels que $A = P^2 + Q^2$.

Exercice 3 Soit $\alpha \in \mathbb{R} \setminus \pi\mathbb{Z}$. Factoriser le polynôme $(X+1)^n - e^{2i\alpha}(X-1)^n$ dans \mathbb{C} .

Exercice 4 Soit $P \in \mathbb{R}[X]$ un polynôme scindé à racines simples sur \mathbb{R} , a un réel non nul. Montrer que P' + aP est aussi scindé à racines simples sur \mathbb{R} .

Exercice 5 Trouver les polynômes $P \in \mathbb{C}[X]$ tels que P(0) = 0 et $P(X^2 + 1) = P(X)^2 + 1$.

Fractions rationnelles

Exercice 6 Décomposer en éléments simples la fraction $\frac{1}{X(X-1)...(X-n)}$.

Exercice 7 Décomposer en éléments simples dans R[X] la fraction $\frac{X^2}{X^4+1}$.

Exercice 8 Soit $\omega = e^{\frac{2i\pi}{n}}$ et $P = \sum_{k=0}^{n-1} X^k$.

- 1. Déterminer la décomposition en éléments simples de $\frac{P'}{P}$.
- 2. En déduire la valeur de $\sum_{k=1}^{n-1} \frac{1}{1-\omega^k}.$

Exercice 9

1. Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ tel que

$$\forall \theta \in \mathbb{R}, \sin((2n+1)\theta) = P_n(\sin \theta).$$

1

2. Décomposer la fraction rationnelle $\frac{1}{P_n}$ en éléments simples.

Exercice 10 Soit $z_1,...,z_n \in \mathbb{C}$. On appelle enveloppe convexe de $\{z_1,...,z_n\}$ le plus petit convexe du plan complexe qui contient tous les z_i . On montre qu'il s'agit de l'ensemble

$$\left\{ \sum_{i=1}^{n} \lambda_i z_i, \ \lambda_i \ge 0 \,\forall i, \, \sum_{i=1}^{n} \lambda_i = 1 \right\}.$$

Soit $P \in \mathbb{C}[X]$ un polynôme non constant.

- 1. Décomposer $\frac{P'}{P}$ en éléments simples.
- 2. Montrer que les racines de P' appartiennent à l'enveloppe convexe des racines de P.
- 3. De quel théorème ce théorème est-il la généralisation?